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1 Introduction

Recently, radial basis functions (RBFs) have enjoyed considerable success and
research as a technique for interpolating data and functions. A radial basis
function, φ(‖x−xj‖) is a spline that depends on the Euclidian distance between
distinct data centers xj, j = 1, 2, ..., N ∈ R

n, also called nodal or collocation
points.

Although most work to date on RBFs relates to scattered data approximation
and in general to interpolation theory, there has recently been an increased
interest in their use for solving partial differential equations (PDEs). This
approach, which approximates the whole solution of the PDE directly using
RBFs, is very attractive due to the fact that this is truly a mesh-free technique.
Kansa [1] introduced the concept of solving PDEs using RBFs.

Structures composed of laminated materials are among the most important
structures used in modern engineering and, especially, in the aerospace in-
dustry. Such lightweight structures are also being increasingly used in civil,
mechanical and transportation engineering applications. The rapid increase of
the industrial use of these structures has necessitated the development of new
analytical and numerical tools that are suitable for the analysis and study of
the mechanical behavior of such structures. The behavior of structures com-
posed of advanced composite materials is considerably more complicated than
for isotropic ones. The strong influences of anisotropy, the transverse stresses
through the thickness of a laminate and the stress distributions at interfaces
are among the most important factors that affect the general performance of
such structures. The use of shear deformation theories has been the topic of
intensive research, as in [2–14], among many others.

The analysis of laminated plates by finite element methods is now considerably
established. The use of alternative methods such as the meshless methods



based on radial basis functions is atractive due to the absence of a mesh and
the ease of collocation methods. More recently the author and colleagues have
applied RBFs to the static deformations of composite beams, plates and shells
[15–22].

This paper presents a review of current methods for the analysis of laminated
plates and shells by strong-form-based meshless methods.
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